Recent Electroweak Results from DØ

Adam Lyon

Fermilab / Computing Division / DØ

Joint Experimental Theoretical Physics Seminar November 3, 2006

Outline

- Introduction
 - Electroweak Physics
 - The DØ Experiment
- 2 Transverse Momentum Spectrum in 1 fb $^{-1}$
- Photon ID
- Dibosons
 - $Z\gamma$ in 1 fb⁻¹
 - $W\gamma$ Radiation Amplitude Zero in 1 fb⁻¹

Electroweak Physics

W and Z Production Leads to Rich Physics

- Essential tests of the Standard Model
- Higher order physics with Z p_T
- SM structure with dibosons (couplings, radiation amplitude zero)
- Constraints on Higgs mass through W mass
- Important backgrounds to many New Phenomena and other analyses

The DØ Experiment

- 84 institutions from 19 countries

DØ Detector

- General purpose high p_T detector
- Excellent coverage for electrons ($|\eta| < 3.2$)
- Excellent coverage for muons ($|\eta|$ < 2.0)
- Hermetic calorimetry for missing E_T measurement

DØ Detector in a Diagram

Calorimeter Regions for Electrons

- Central electrons (Central calorimeter CC): $|\eta|$ < 1.1
- Forward electrons (End Cap calorimeter EC): Typically 1.5 $< |\eta| <$ 2.5

Luminosity

Results are due to excellent performance of the Tevatron Results shown here are from our 1 fb⁻¹ sample

Efficiency

We work hard to make every delivered pb⁻¹ count

W and Z Identification

Leptonic decays are clean low background signatures

- High p_T e or μ
- Missing E_T from ν

Two oppositely charged e
 or μ with high p_T

$|d\sigma/dp_T$ for $Z/\gamma^* o e^+e^-$

Z Transverse Momentum

- Z boson production governed by strong force
- $q\bar{q}$ annihilation gives no p_T to Z
- BUT, if a gluon is radiated by incoming (anti-)quark, then p_T is generated

Resummation

- Perturbative QCD governs high Z p_T
- ullet For small Z p_T , cross section diverges due to soft gluon radiation!
- Solve with resummation CSS (Colins, Soper, & Sterman) formalism
- Formalism has three free parameters. One of them, g₂, is important for Z p_T and is an input in some simulations

Broadening for forward Zs

- There may be additional x dependent effects not accounted for by the standard resummation
- Add an extra x term to the resummed form factor
- Effect is to broaden the $Z p_T$ distribution for $x < 10^{-2}$
- W and Higgs too
- If effect exists, could be substantial at the LHC

Analysis Goals

- Test the vector boson production formalism
- Help to reduce the theory uncertainty (g_2 is essential for precise W mass measurement)

Notes:

- Analysis with Z bosons is more precise than with W bosons
- Have $\sim 1 \text{ fb}^{-1}$ of data and $\sim 5{,}000$ forward Z bosons (|y| > 2)

Deliverables

- Precision measurement of the $Z p_T$ spectrum, $d\sigma/dp_T$
- Experimentally determine g₂
- Verify (or not) broadening of spectrum for forward Z bosons

|Select Z, $\gamma^* ightarrow e^+e^-$

- Identify 2 electrons with p_T > 25 GeV/c
- Single electron trigger fired
- Electrons may be central (CC) $|\eta| < 1.1$
- ... or forward (EC) $1.5 < |\eta| < 3.2$
- If both central (CC-CC), then both must have a track match
- If one central and one forward (CC-EC) or both forward (EC-EC) then one must have a track match
- Invariant mass $70 < M_{ee} < 110 \text{ GeV}/c^2$

Yields in 965 \pm 58 pb $^{-1}$

CC-CC	CC-EC	EC-EC	Total
23,959	30,344	9,598	63,901

Efficiencies with Tag and Probe

Use $Z \rightarrow ee$ to study efficiencies with data

Efficiencies and Acceptance

Preselection efficiencies:

• Use tag and probe method; parametrized by electron p_T and pseudorapidity with much looser Z sample

Requirement	$\epsilon^{ extsf{CC}}$ (%)	$\epsilon^{\sf EC}$ (%)
Electron ID	99.6 ± 0.1	99.2 ± 0.1
Spatial Track Match	90.5 ± 0.1	61.5 ± 0.3
Shower Shape	97.1 ± 0.1	96.9 ± 0.1

Trigger efficiencies range from 96.6% to 99.0%

Signal $(Z/\gamma^* \to e^+e^-)$ Monte Carlo

RESBOS(g_2 is input 0.68 is default) + PHOTOS + DØ Parametrized MC

Backgrounds

Multijet Di-jet events or EM+jet events (from W+jet or direct γ)

- Jets misidentified as electrons
- Use "bad" (fails shower shape requirement) EM sample to determine shape of "ee" invariant mass
- Fit candidate sample to linear combination of this shape and signal MC

Region	Background Fraction
CC-CC	1.30%
CC-EC	8.69%
EC-EC	3.79%
All	4.98%

Backgrounds continued

Z to taus
$$Z \rightarrow \tau \tau \rightarrow ee + 4\nu$$

- Estimate contribution with MC.
- Expect 16.9 events in 1 fb⁻¹
- Negligible

Dibosons WW, WZ, $W\gamma$

- Generates real electrons or electron+photon (latter is misidentified as an electron)
- Estimate contribution with MC
- Negligible

Invariant Mass

965 pb^{-1}

965 pb^{-1}

Unfolding

To compare with theory, must remove smearing due to detector resolution effects

Use the RUN program (Regularized Unfolding) by Blobel

Inputs

- Measured $Z p_T$ in the data
- Z p_T of all generated signal MC events
- $Z p_T$ of all smeared signal MC events (1-to-1 correspondence with above)
- Spurious Z p_T from the multijet background
- Passes tests for stability and closure

Systematic Uncertainties

- Smearing Energy scale, offset, and resolution Shift smearing parameters within 1σ and note change to $Z p_T$. < 4%. Most bins < 2%
 - PDFs Use RESBOS with CTEQ6.1m PDFs. Shift within $\pm 1\sigma$ errors; gives 40 PDFs. Average uncertainly $\sim 3\%$
 - RUN Use smeared MC as data; do we get back generated MC? 3% for $p_T < 30 \text{ GeV/}c$ and 6% for $30 < p_T < 50 \text{ GeV/}c$
 - ϵ Z p_T dependence on Lepton ID efficiencies. Dominated by difference between data and full GEANT MC. 8% uncertainty. Under continued study. Largest Uncertainty

Unfolded $Z p_T$ distribution

Compared to RESBOS with default $g_2 = 0.68$

Z p_T Wrap Up

Accomplished

- Measured the $Z p_T$ spectrum for $965 \pm 58 \text{ pb}^{-1}$ (Preliminary)
- Compare to RESBOS

In progress:

- Working to reduce systematics
- Will extract g₂ (Very important for precise W mass)
- Will examine Z p_T for forward Z bosons to look for broadening at low x (Very important since if broadening exists for Z, it also exists for Higgs)

Improved Photon ID

Photon ID is challenging: absence of track, high multijet background, no observed high p_T photon resonance (like $Z \rightarrow ee$).

Improved Photon Identification

- ullet Extensive studies of efficiencies and backgrounds with Z o ee data and full GEANT Monte Carlo
- Extends photon ID to forward region
- Investigates integration of central and forward preshower detectors for verification and pointing
- Automated tools for efficiency and background determination
- Methodology:
 - Treat photons as electrons; use $Z \rightarrow ee$ to tune selections
 - Measure photon efficiency with photon + jet MC (for $Z\gamma$)
 - Correct for e/γ shower difference with MC
 - Large data sample makes possible and accurate

Diboson Physics Introduction

 $W\gamma$, $Z\gamma$, WW, WZ, ZZ

Important

- Opportunity to test cross sections and phonomena predicted by the SM
- Direct view of gauge boson "self couplings"
- New physics would be unambiguous
- Better understanding of backgrounds to New Phenomena and Higgs analyses

Diboson Physics Introduction

Exciting

In past two years, five W&C talks devoted to Dibosons

```
CDF Waters 11/19/04 All DØ Diehl 1/28/05 All DØ Askew 6/23/06 Z\gamma, WW, WZ first evidence (>3\sigma) CDF Lipeles 10/30/06 WZ first observation (>5\sigma) DØ —This talk— Z\gamma & W\gamma with 1 fb^{-1}
```

Boson Self-interactions

Non-Abelian $SU(2)_L \times U(1)_Y$ gauge symmetry leads to self-interactions for bosons in the SM

- Each diagram alone violates unitarity. But taken together the unitarity violation cancels out. Look for effects of this delicate balance
- NOTE: SM forbids $Z \gamma$ self-interactions at tree level

$Z\gamma$ Production

Only via:

- Identify via leptonic Z decays + γ
- At $\sqrt{s}=$ 1.96 TeV, SM (NLO) predicts* $\sigma(p\bar{p}\to Z\gamma\to\ell\ell\gamma)=$ 4.2 \pm 0.2 pb

 $^{^*\}Delta R_{e\gamma} > 0.7, E_T^{\gamma} > 7 \text{ GeV}, M_{ee} > 30 \text{ GeV}/c^2$

$Z\gamma$ Cartoon

$Z\gamma$ Anomalous Couplings

- Anomalous $ZZ\gamma$ and $Z\gamma\gamma$ couplings would increase σ resulting in higher E_T photons than SM
- To characterize non-SM couplings, use formalism:
 - Assume only Lorentz and gauge invariance
 - Use eight coupling parameters h_1^V where V is Z or γ
 - Two are CP violating (i = 1, 2) and two are CP conserving (i = 3, 4)
 - Ensure unitarity with form factor[†]

$$h_i^V = \frac{h_{i0}^V}{(1+\hat{s}/\Lambda^2)^{n_i}}$$

In SM, all couplings here are zero

 $^{^{\}dagger}\sqrt{\hat{s}}$ is parton center-of-mass energy, Λ is form factor scale, and n_i is form factor power = 3 or 4

$Z\gamma$ Analysis Goals

- ullet Test standard model $ZZ\gamma$ and $Z\gamma\gamma$ predictions
- Look for non-SM effects
- Look for exotic physics in $Z\gamma$ mass spectrum
- Use 1 fb⁻¹ data

Deliverables

- Measure $\sigma(p\bar{p} \to Z\gamma \to \ell\ell\gamma)$
- Compare with standard model and discover AC or set limits
- ullet Measure $M_{\ell\ell\gamma}$ spectrum and look for resonances

Previous DØ analyses

300 pb⁻¹ results previously published:

σ + AC limits

- PRL 95, 051802 (2005)
- Examined 290 $\ell\ell\gamma$ events
- $\sigma(\ell\ell\gamma) = 4.2 \pm 0.4 \pm 0.3 \text{ pb}$
- Compare to NLO SM $3.9^{+0.1}_{-0.2}$ pb $(E_T^{\gamma} > 8 \text{ GeV here})$
- AC Limits for $\Lambda = 1$ TeV

$$h_{30}^Z < 0.23 \quad h_{40}^Z < 0.020 \ h_{30}^{\gamma} < 0.23 \quad h_{40}^{\gamma} < 0.019$$

Bump hunt for scalars

- PLB 641, 415 (2006)
- No statistically significant excess for $X \to Z\gamma$

1 fb⁻¹ $Z\gamma$ analysis

Use *ee* channel in $1026 \pm 61.6 \text{ pb}^{-1}$ of data

Select Z bosons

- Require two identified electrons
- One must be in CC $|\eta|$ < 1.1, other may be in CC or EC (1.5 < $|\eta|$ < 2.5)
- One must have $p_T > 25 \text{ GeV/}c$, other > 15 GeV/c
- Both must match to a track
- Single electron trigger fired
- $M_{ee} > 30 \text{ GeV}/c^2$

	CC-CC	CC-EC
Yield (events)	40,513	27,521
Efficiency	$(72.3 \pm 2.1)\%$	$(54.7 \pm 3.0)\%$

- Isolated EM shower in CC ($|\eta|$ < 1.1)
- No nearby track on photon candidate path
- > 96% of energy in EM calorimeter layers
- $p_T > 7 \text{ GeV/}c$
- Not near either electron, $\Delta R_{e\gamma} > 0.7$, $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- > 90% efficient for high p_T photons, 53% at 7 GeV/c

	CC-CC	CC-EC	Total
$Z\gamma$ Yield	256	131	387

$Z\gamma$ Backgrounds

- Z + jets where a jet is misidentified as an electron is the only non-negligible background
- Measure mis-identification rate using multijet sample (jet triggered)
- mis-id rate is rate that EM-like objects pass photon selection
- Remove contamination by real photons (with photon purity from MC)
- Normalize by number of very loose photon candidates in Z boson sample to number in multijet sample.

	CC-CC	CC-EC	Total
Bkg	$18.3 \pm 3.0 \pm 2.9$	$14.8 \pm 2.5 \pm 2.2$	33.1 ± 6.4

$Z\gamma$ Signal Simulation

- Use Baur Leading Order $Z\gamma$ generator (has ISR, FSR and Drell-Yan)
- But NLO is important; use Baur NLO generator with just ISR to determine k correction factor
- Then use parametrized MC to determine acceptance and reconstruction efficiencies

- SM Predicts 327.3 \pm 19.5 events $Z\gamma \rightarrow ee\gamma$
- 33.1 \pm 6.4 events background from Z+jet
- SM + Bkg = 360.4 ± 20.6 events
- We observe 387 $Z\gamma \rightarrow ee\gamma$ events

$Z\gamma$ Processes Seen

$Z\gamma$ Cross Section and Wrap Up

PRELIMINARY

Combined CC-CC/CC-EC cross section for $1026 \pm 61.6 \text{ pb}^{-1}$

$$\sigma imes BR(Z\gamma o ee\gamma) = 4.51 \pm 0.37_{
m stat+sys} \pm 0.27_{
m lum} \;
m pb^*$$
 NLO Prediction is $\sigma imes BR(Z\gamma o ee\gamma) = 4.2 \pm 0.2 \;
m pb$ For $E_T^\gamma > 7 \; {
m GeV}, \; \Delta R_{e\gamma} > 0.7, \; M_{ee} > 30 \; {
m GeV/}c^2$

To do:

- Add muon channel
- Set limits on $ZZ\gamma$ and $Z\gamma\gamma$ anomalous couplings
- Bump hunt with 1 fb⁻¹

^{*} This approved preliminary result uses the old luminosity constant. Result being prepared for publication uses the new luminosity constant.

$W\gamma$ Introduction

- Direct look at $WW\gamma$ coupling
 - For $W\gamma$ production, only $WW\gamma$ couplings are visible
 - For WZ, only WWZ couplings
 - For WW both are visible and their relation is an assumption (LEP)
- Test Standard Model
- Unambiguous signs for new physics (higher cross section, higher E_T spectra)
- Perhaps measure anomalous electric and magnetic moments of W boson
- Standard Model Predicts a Radiation Amplitude Zero not yet observed (described in detail in a few slides ahead)

$WW\gamma$ Anomalous Couplings

Use effective Lagrangian formalism:

$$L_{WW\gamma} = -ie \left[(W_{\mu\nu}^{\dagger} W^{\mu} A^{\nu} - W_{\mu}^{\dagger} A_{\nu} W^{\mu\nu}) + \kappa_{\gamma} W_{\mu}^{\dagger} W_{\nu} F^{\mu\nu} + \frac{\lambda_{\gamma}}{M_{W}^{2}} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} F^{\nu\lambda} \right]$$

- First term: minimal coupling of γ and W; fixed by W charge
- Second term: κ and λ relate to electromagnetic moments

In the SM:
$$\kappa_{\gamma} = 1$$
 and $\lambda_{\gamma} = 0$

Physical quantities

These couplings are related to physical W boson properties

Moment	Full form	SM Value
Magnetic Dipole	$\mu_W = e(1 + \kappa_\gamma + \lambda_\gamma)/2M_W$	e/M_W
Electric Quadrupole	$Q_W^e = -e(\kappa_\gamma - \lambda_\gamma)/M_W^2$	$-e/M_W^2$

Boson Self-interactions

Non-Abelian $SU(2)_L \times U(1)_Y$ gauge symmetry leads to self-interactions for bosons in the SM

- Each diagram alone violates unitarity. But taken together the unitarity violation cancels out. Look for effects of this delicate balance
- NOTE: SM forbids $Z \gamma$ self-interactions at tree level

$W\gamma$ Radiation Amplitude Zero

The balance of the three diagrams in the SM leads to destructive interference

- Manifests as a zero in the angle distribution between the photon and the incoming quark in the center of mass frame
- $\cos(\theta^*) = \pm 1/3$ where + is for W^-

- But the unknown ν direction makes $\cos(\theta^*)$ ambiguous
- Fortunately, the W and γ directions are correlated, and so the lepton from the W and the γ directions are correlated
- Measure instead the charge-signed rapidity difference
- In the SM, $sign(\ell)[y(\gamma) y(\ell)] \approx -0.3$

Radiation Amplitude Zero Continued

- with $E_{\gamma} >$ 7 GeV, $\Delta R_{\ell,\gamma} >$ 0.7, Three body mass > 110 GeV/ c^2 to reduce FSR
- Integral of curves normalized to their expected cross sections with respect to the SM, which is set to unity

More Radiation Amplitude Zero Continued

Never before observed

Potential spoilers of RAZ

- Final state radiation has no radiation amplitude zero; fills in dip (Our requirements minimize FSR)
- Other SM backgrounds do not have RAZ; fill in dip (Keep background small)
- NLO effects reduces the correlation between the lepton and the photon; fills in dip (Not a big problem here; but makes W_γ more difficult at LHC)
- Anomalous couplings reduce or eliminate balance; fills in or eliminates dip (New Physics! Woohoo!)

$W\gamma$ Analysis Goals

- Use the *e* and μ decays of the *W* in the 1 fb⁻¹ data
- (Hadronic channel is swamped by multijet background)
- Use forward photons for best acceptance

Deliverables

- Investigate Radiation Amplitude Zero
- Measure $W\gamma$ Cross Section
- Discover or set limits on anomalous couplings

$W\gamma$ Event Selection

$W \rightarrow e \nu_1$

- Select identified isolated electron with p_T > 25 GeV/c
- Electron may be in CC ($|\eta| < 1.1$) or EC (1.5 < $|\eta| < 2.5$)
- Electron must be matched to a track
- Missing E_T > 25 GeV
- Event must pass a single electron trigger

$W \rightarrow \mu \nu$

- Select identified muon isolated in calorimeter and tracker with p_T > 20 GeV/c
- Missing E_T > 20 GeV
- No additional muons or tracks with p_T > 15 GeV/c
- Event must pass a single muon trigger

More Requirements

Photon ID

- Photon may be central (CC) or forward (EC)
- $E_T^{\gamma} > 7 \text{ GeV}$
- Photon is isolated in calorimeter and tracker
- Shower shape is consistent with EM object
- Photon has an associated cluster in a preshower detector
- Photon and lepton must be separated ΔR > 0.7

Other

- To reduce FSR, $M_{T^3} > 110 \text{ GeV/}c^2$
- To further reduce FSR, $M_T(e\nu) > 50 \text{ GeV/}c^2$
- To reduce $Z \rightarrow ee$, 89 $< M_{e\gamma} <$ 99 GeV/ c^2
 - Optimized for minimal fractional uncertainty on signal

DØ Detector in a Diagram

More Requirements

Photon ID

- Photon may be central (CC) or forward (EC)
- $E_T^{\gamma} > 7 \text{ GeV}$
- Photon is isolated in calorimeter and tracker
- Shower shape is consistent with EM object
- Photon has an associated cluster in a preshower detector
- Photon and lepton must be separated ΔR > 0.7

Other

- To reduce FSR, $M_{T^3} > 110 \text{ GeV}/c^2$
- To further reduce FSR, $M_T(e\nu) > 50 \text{ GeV/}c^2$
- To reduce $Z \rightarrow ee$, 89 $< M_{e\gamma} <$ 99 GeV/ c^2
 - Optimized for minimal fractional uncertainty on signal
 - Asymmetric $W\gamma$ has more events below M_Z than above

Efficiencies and Acceptances

- Efficiency of ID requirements for e, μ determined by $Z \to ee$ data with tag and probe method
- Acceptance ($W\gamma$ passing kinematic and geometric requirements) determined by ...
 - Baur LO MC with k factor for NLO and Pythia to determine initial boost.
 - Parametrized MC used for smearing
- ullet Difficult to calculate γ efficiencies from data
 - Use full GEANT MC with data minbias overlay
 - Isolation and EM fraction for low energy γ affected by ambient calorimeter energy. Ambient energy in $Z \to ee$ data agrees well with GEANT
 - but...

Using $Z\gamma$ for Photon ID efficiency

- No easy handle for low energy γ reconstruction efficiency, but. . .
- Use $Z\gamma$ FSR events for photons with $E_T < 25$ GeV
- For $E_T > 25$ GeV, use GEANT and scale with $Z \rightarrow ee$ data/MC comparison

Backgrounds

W + jet

- ullet Jet misid as γ
- Dominant background in both channels
- Estimated with data
- S/B ~ 1

ℓeX

- \bullet *e* misid as γ
- Significant in e channel $(Z \rightarrow ee)$
- Estimated with data

Backgrounds Continued

- Missing or mismeasured lepton
- Significant in muon channel
- Estimated with MC

PRELIMINARY

	μ channel	e channel
Luminosity	878 pb^{-1}	933 pb ⁻¹
$\epsilon imes A$	0.046 ± 0.003	0.071 ± 0.007
Candidate Events	245	389
W + jet Bkg	98 ± 12	$148 \pm 17_{ ext{stat+sys}}$
<i>ℓeX</i> Bkg	6 ± 2	$34 \pm 4_{ ext{stat+sys}}$
au Bkg	2.6 ± 0.4	$1.7 \pm 0.2_{ ext{stat+sys}}$
$Z\gamma$	8 ± 1	,
Expected Signal	130 ± 9	211 ± 14
Measured Signal	130 ± 18	205 ± 26
Measured $\sigma \times BR$ (pb)	$3.21 \pm 0.49 \pm 0.20$	$3.12 \pm 0.49_{\rm status ye} \pm 0.19_{\rm lum}$

Note: SM $\sigma \times BR = 3.21 \pm 0.08_{\rm PDF}$ pb with respect to $E_T^\gamma > 7$ GeV, $\Delta R_{\ell\gamma} > 0.7$, and $M_{T^3} > 90$ GeV

- Distribution is consistent with SM ($\chi^2 = 16/12\,$ DOF)
- Shape is indicative of destructive interference from RAZ
- Do we see the Radiation Amplitude Zero? Quantify...

Quantifying the dip

Shape Test

- Compare data shape to an alternative hypothesis
- χ² test of the normalized distributions
- Alternative hypothesis is AC $WW\gamma$ coupling $\kappa = -1, \lambda = 0$
- Turns off W magnetic dipole moment
- Rapidity difference is dipless (unimodal)

Dip Test

- Measure statistical significance of observed dip
- Compare number of candidates in dip to number in peak
- Addresses if dip is a statistical fluctuation

Float Normalization

- Normalization is allowed to float (not really fair)
- Unimodal hypothesis is consistent with data at χ² = 9/11 DOF

Fixed Normalization

- Normalization fixed by cross sections
- AC enhances $\sigma(\mathbf{W}\gamma)$
- This hypothesis fits at $\chi^2 = 55/12$ DOF

- Determine probability that dip is a statistical fluctuation
- Use three bins
 - 1: sample small peak
 - 2: sample dip
 - 3: sample big peak

- Measure $R_1 = N_{dip}/N_{small}$, $R_2 = N_{dip}/N_{big}$
- Then by definition, if R_1 and $R_2 < 1$ there is a depletion of events in the expected region
- Use SM MC to find bin breaks (expected positions of dip and peaks)

- Probability of no dip = $Prob(R_1 \ge 1)$ or $R_2 \ge 1$)
- From the data (DØ PRELIMINARY)
 R₁ = 0.841 ± 0.117

$$R_1 = 0.841 \pm 0.117$$

 $R_2 = 0.508 \pm 0.064$

 Assuming Gaussian errors, the dipless hypothesis is ruled out at 90% C.L.

Also used a standard statistical method[‡] that is binless. Consistent with these results.

[‡]J.A. Hartigan and P.M Hartigan, "The Dip Test of Unimodality", Annals of Statistics **13**, 70-84 (1985)

Accomplished

- ullet Observed $W\gamma$ final state. Production rate consistent with SM
- Measured the $W\gamma$ charge signed rapidity difference
 - Consistent with SM
 - Shape is indicative of the Radiation Amplitude Zero with unimodal hypothesis ruled out at 90% C.L.
 - Will be able to make stronger statements with more luminosity
- To do: Use charge signed rapidity difference and photon E_T spectrum to set limits on WWγ AC couplings

SUMMARY

- Electroweak Physics is extremely interesting and important
- With 1 fb⁻¹
 - Measured Z p_T (resummation, g₂)
 - Measured $\sigma(p\bar{p} \to Z\gamma \to ee\gamma)$. Agrees with SM
 - Measured charge signed rapidity difference in $W\gamma$. Agrees with SM. First investigation of Radiation Amplitude Zero
- More data to look at
- More results ahead